Abstract
This paper presents a software framework which combines reactive collision avoidance control approach with path planning techniques for the purpose of safe navigation of multiple Unmanned Aerial Vehicles (UAVs) operating in unknown environments. The system proposed leverages advantages of using a fast local sense-and-react type control which guarantees real-time execution with computationally demanding path planning algorithms which generate globally optimal plans. A number of probabilistic path planning algorithms based on Probabilistic Roadmaps and Rapidly-Exploring Random Trees have been integrated. Additionally, the system uses a reactive controller based on Optimal Reciprocal Collision Avoidance (ORCA) for path execution and fast sense-and-avoid behavior. During the mission execution a 3D map representation of the environment is build incrementally and used for path planning. A prototype implementation on a small scale quad-rotor platform has been developed. The UAV used in the experiments was equipped with a structured-light depth sensor to obtain information about the environment in form of occupancy grid map. The system has been tested in a number of simulated missions as well as in real flights and the results of the evaluations are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.