Abstract

We propose a novel framework for predicting the paths of vehicles that move on a road network. The framework leverages global and local patterns in spatio-temporal data. From a large corpus of GPS trajectories, we predict the subsequent path of an in-progress vehicle trajectory using only spatio-temporal features from the data. Our framework consists of three components: (1) a component that abstracts GPS location data into a graph at the neighborhood or street level, (2) a component that generates policies obtained from the graph data, and (3) a component that predicts the subsequent path of an in-progress trajectory. Hierarchical clustering is used to construct the city graph, where the clusters facilitate a compact representation of the trajectory data to make processing large data sets tractable and efficient. We propose four alternative policy generation algorithms: a frequency-based algorithm (FreqCount), a correlation-based algorithm (EigenStrat), a spectral clusteringbased algorithm (LapStrat), and a Markov Chain-based algorithm (MCStrat). The algorithms explore either global patterns (FreqCount and EigenStrat) or local patterns (MCStrat) in the data, with the exception of LapStrat which explores both. We present an analysis of the performance of the alternative prediction algorithms using a large real-world taxi data set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call