Abstract

An attempt is accomplished to study nonlinear radiation and chemical reactive magnetohydrodynamic (MHD) flow of nanofluid. Nanofluid comprises water and copper (Cu) and silver (Ag) as nanoparticles. Effect of porous medium is also taken into account. Characteristics of heat and mass transfers are discussed via homogeneous-heterogeneous reactions. Correlation behavior of surface drag force and heat transfer rate is discussed. Probable error and statistical declaration for drag force and heat transfer rate are computed. Ordinary differential systems have been considered. Solutions of the problem are presented via a numerical technique namely Euler’s Explicit Method (EEM). The key roles of different embedded parameters on different characteristics of fluid are discussed graphically. The outcomes of the given problem demonstrate that non-linear radiation has noteworthy effect on both temperature and heat transfer coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call