Abstract

Coverage analysis is essential for many coverage tasks (e.g., robotic grit-blasting, painting, and surface cleaning) performed by Autonomous Industrial Robots (AIRs). Coverage analysis enables (1) the performance evaluation (e.g., coverage rate and operation efficiency) of AIRs for a coverage task, and (2) the configuration design of a multi-AIR system (e.g., decision on the number of AIRs to be used). Multi-AIR coverage analysis of large and complex structures involves addressing various problems. Thus, a framework is presented in this paper that incorporates various modules (e.g., AIR reachability, AIR base placement, collision avoidance, and area partitioning and allocation) for appropriately addressing the associated problems. The modules within the framework provide the flexibility of utilizing different methods and algorithms, depending on the requirements of the target application. The framework is tested and validated by extensive analyses of 10 different scenarios with up to 10 AIRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.