Abstract

AbstractThe paper presents a 3D‐based adaptive first‐order shell finite element to be applied to hierarchical modelling and adaptive analysis of complex structures. The main feature of the element is that it is equipped with 3D degrees of freedom, while its mechanical model corresponds to classical first‐order shell theory. Other useful features of the element are its modelling and adaptive capabilities. The element is assigned to hierarchical modelling and hpq‐adaptive analysis of shell parts of complex structures consisting of solid, thick‐ and thin‐shell parts, as well as of transition zones, where h, p and q denote the mesh density parameter and the longitudinal and transverse orders of approximation, respectively. The proposed hp‐adaptive first‐order shell element can be joined with 3D‐based hpq‐adaptive hierarchical shell elements or 3D hpp‐adaptive solid elements by means of the family of 3D‐based hpq/hp‐ or hpp/hp‐adaptive transition elements.The main objective of the first part of our research, presented in the first part of the paper, was to provide non‐standard information on the original parts of the element algorithm. Here we describe the second part of the research, devoted to the methodology and results of the application of the element to various plate and shell problems. The main objective of this part is to verify algorithms of the element and to show its usefulness in modelling and adaptive analysis of shell and plate parts of complex structures. In order to do that, there is a presentation of the results of a comparative analysis of model plate and shell problems using the classical and our elements, and equidistributed and integrated Legendre shape functions. For the plate problem a comparison of the results obtained from the adaptive and non‐adaptive analysis is also included. Additionally, some advantages of the application of our element are shown through a comparative analysis of p‐convergence of the thin plate problem and an adaptive analysis of the exemplary complex structure. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call