Abstract

High-level simulation tools are used for optimization and design space exploration of digital circuits for a target Field Programmable Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC) implementation. Compared to ASICs, FPGAs are slower and less power-efficient, but they are programmable, flexible and offer faster prototyping. One reason for the slow performance in FPGA is their finer granularity as they operate at bit-level. The possible solution is Coarse Grained Reconfigurable Architectures (CGRAs) that work at word-level. There already exists a myriad of CGRAs based on their architectural parameters. However, the CGRA research lacks in design automation since high-level simulation and optimization tools targeted at CGRAs are nearly non-existent. In this paper, we propose a high-level simulation and optimization framework for mesh-based homogeneous CGRAs. As expected, the results show that auto-generated homogeneous CGRAs consume 54% more resources when compared with academic FPGAs while providing around 63.3% faster mapping time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call