Abstract

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. Heading-guided recognition (HGR) is proposed as an efficient method for adaptive classification of activity. The HGR approach is demonstrated using “motion history images” that are then recognized via a mixture-of-Gaussians classifier. The system is tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. In addition, experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call