Abstract

A computer vision method is presented for recognizing the non-rigid motion observed in objects moving in a 3D environment. This method is embedded in a more complete mechanism that integrates low-level (image processing), mid- level (recursive 3D trajectory estimation), and high-level (action recognition) processes. Multiple moving objects are observed via a single, uncalibrated video camera. A Kalman filter formulation is used in estimating the relative 3D motion trajectories. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages. In this paper we concentrate in the action recognition stage. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is then proposed as an efficient method for adaptive classification of action. The TGR approach is demonstrated using 'motion history images' that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.