Abstract

Goal: Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. Methods: The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. Results: The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. Conclusions: The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.