Abstract

Energy consumption in machining manufacturing systems is increasingly of interest due to concern for global climate change and manufacturing sustainability. To utilise energy more effectively, it is paramount to understand and characterise the energy consumption of machining manufacturing systems. To this end, a framework to analyse energy consumption characteristics in machining manufacturing systems from a holistic point of view is proposed in this paper. Taking into account the complexity of energy consumption in machining manufacturing systems, energy flow is described in terms of three layers of machining manufacturing systems including machine tool layer, task layer and auxiliary production layer. Furthermore, the energy consumption of machining manufacturing systems is modelled in the spatial and temporal dimensions, respectively, in order to quantitatively characterise the energy flow. The application of the proposed modelling framework is demonstrated by employing a comprehensive analysis of energy consumption for a real-world machining workshop. The characteristics of energy consumption for machine tool layer, task layer and auxiliary production layer are, respectively, obtained using quantitative models in the spatial and temporal dimensions, which provides a valuable insight into energy consumption to support the exploration of energy-saving potentials for the machining manufacturing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.