Abstract

AbstractThe characterization of the enzymatic hydrolysis of starch is a prerequisite for assessing the impact of starchy food in the gastrointestinal tract. The issue is relevant given the necessity of tailoring food products with a prescribed capacity of glucose production. Several empirical functions have been proposed for modeling starch digestograms. The first‐order exponential and the Weibull models are among the most used functions. Although tight numerical fitting of the experimental data may be obtained with such functions, a reliable interpretation of the underlying parameters is commonly a drawback. This work explores the use of fractional‐order kinetics for the modeling of starch digestograms. The aims are to show that: a) the fractional‐order framework offers a framework for capturing multiscale patterns observed, and b) the Weibull's and Peleg's models are particular cases of a more general function expressed as a generalized (Mittag‐Leffler) exponential function. The results showed that the Mittag–Leffler exponential function provided the best‐fitting results. However, the gain relative to Weibull's and fractional Peleg's functions may be small. It is concluded that Weibull's function approximates a more general function (the Mittag‐Leffler function), and as such its parameters find an easier interpretation in terms of the hydrolysis kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.