Abstract
In contrast to fossil fuels, the sun has more than enough energy to supply the entire world's energy needs. The sole constraint on solar energy as a renewable resource is our capacity to efficiently and economically convert it to electricity. In this work, we take advantage of the fractional derivative, we introduce the dynamics of the solar heating model. We incorporated the Atangana-Baleanu derivative (ABC) in our analysis. Then the solutions of our fractional system are investigated for existence and uniqueness. In order to visualize the fractional order model solution, we used a novel and trendy numerical method to represent the dynamics of different parameters of the nonlinear ordinary differential equation system. It is shown that the proposed ODE models are valid and efficient for fractional order data for a functioning solar heating system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.