Abstract

The non-Darcian flow and solute transport in geometrically nonlinear porous media are modeled with Riesz derivative solved via Simpson’s rule or treated through the Grünwald–Letnikow definition and subsequently discretized via Finite Difference schemes when considering anomalous diffusion, nonlinear diffusion, or anomalous solute advection–dispersion, respectively. Particularly, the standard diffusion and advection–dispersion equations are converted into fractional equations to take into account memory effects as well as non-Fickian dispersion processes. Hence, a 3D hydro-mechanical model accounting for geometric nonlinearities is correspondingly developed including the fractional diffusion–advection–dispersion equations (FRADEs) and a series of one-dimensional analyses are performed with validation purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.