Abstract

Predicting the electrical conductivity of porous media is important for oil reservoirs, rock physics, and fuel cells. In this work, a cuboid embedded with a damaged tree-like network is employed to denote a portion of porous media. Analytical expressions for the electrical conductivity are then derived with the fractal theory. Various structural parameters have been examined in detail for the influence of electrical conductivity. It is found that the increased number of damaged channels means more difficult ion migration and lower electrical conductivity of porous media. In addition, a decreasing length ratio or an increasing diameter ratio will increase electrical conductivity. Moreover, both the channel distribution fractal dimension and tortuosity fractal dimension result in a decrease in electrical conductivity. A comparison of the results predicted by other models yields a good agreement, validating our proposed model. These results may further interpret the transport properties of porous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call