Abstract

A high output impedance current source with a wide bandwidth is needed in electrical impedance tomography systems. Limitations appear mainly at higher frequencies and non-simple loads. In order to adjust the output current, the amplitude and phase are made to achieve the expected value automatically. A current source based on the field programmable gate array is designed. In this paper, we proposed a double DAC differential current source structure. By measuring the voltage of the sampling resistor in series with the load and using the proposed dynamic reference pointdemodulation algorithm, the actual current amplitude and phase on the load can be quickly obtained. Through the adaptive compensation module, the output current is adjusted to the expected value. The experimental results show that the output resistance of the current source can reach 10 MΩ and the output capacitance can be less than 0.8 pF in the frequency range of 10 kHz-1.28MHz. At the same time, the current amplitude attenuation is less than 0.016%, and the phase error is less than 0.0025° after compensation. Therefore, the proposed current source achieves widebands, biocompatibility, and high precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.