Abstract
We investigate the central moments of (regular) hexagons and derive accordingly a discrete approximation to definite integrals on hexagons. The seven-point cubature rule makes use of interior and neighbor center nodes, and is of fourth order by construction. The result is expected to be useful in two-dimensional (open-field) applications of integral equations or image processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.