Abstract

AbstractWe present a nine‐point fourth‐order finite difference method for the nonlinear second‐order elliptic differential equation Auxx + Buyy = f(x, y, u, ux, uy) on a rectangular region R subject to Dirichlet boundary conditions u(x, y) = g(x, y) on ∂R. We establish, under appropriate conditions O(h4)‐convergence of the finite difference scheme. Numerical examples are given to illustrate the method and its fourth‐order convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.