Abstract

The hybrid spectral difference methods (HSD) for the Laplace and Helmholtz equations in exterior domains are proposed. We consider the fictitious domain method with the absorbing boundary conditions (ABCs). The HSD method is a finite difference version of the hybridized Galerkin method, and it consists of two types of finite difference approximations; the cell finite difference and the interface finite difference. The fictitious domain is composed of two subregions; the Cartesian grid region and the boundary layer region in which the radial grid is imposed. The boundary layer region with the radial grid makes it easy to implement the discrete radial ABC. The discrete radial ABC is a discrete version of the Bayliss–Gunzburger–Turkel ABC without pertaining any radial derivatives. Numerical experiments confirming efficiency of our numerical scheme are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.