Abstract

Most real-world databases contain substantial amounts of time-referenced, or temporal, data. Recent advances in temporal query languages show that such database applications may benefit substantially from built-in temporal support in the DBMS. To achieve this, temporal query representation, optimization, and processing mechanisms must be provided. This paper presents a foundation for query optimization that integrates conventional and temporal query optimization and is suitable for both conventional DBMS architectures and ones where the temporal support is obtained via a layer on top of a conventional DBMS. This foundation captures duplicates and ordering for all queries, as well as coalescing for temporal queries, thus generalizing all existing approaches known to the authors. It includes a temporally extended relational algebra to which SQL and temporal SQL queries may be mapped, six types of algebraic equivalences, concrete query transformation rules that obey different equivalences, a procedure for determining which types of transformation rules are applicable for optimizing a query, and a query plan enumeration algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.