Abstract

In this paper we aim to minimize the sum of two nonsmooth (possibly also nonconvex) functions in separate variables connected by a smooth coupling function. To tackle this problem we choose a continuous forward-backward approach and introduce a dynamical system which is formulated by means of the partial gradients of the smooth coupling function and the proximal point operator of the two nonsmooth functions. Moreover, we consider variable rates of implicity of the resulting system. We discuss the existence and uniqueness of a solution and carry out the asymptotic analysis of its convergence behaviour to a critical point of the optimization problem, when a regularization of the objective function fulfills the Kurdyka-Łojasiewicz property. We further provide convergence rates for the solution trajectory in terms of the Łojasiewicz exponent. We conclude this work with numerical simulations which confirm and validate the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.