Abstract

Formal methods have become a recommended practice in safety-critical software engineering. To be formally verified, a system should be specified with a specific formalism such as Petri nets, automata and process algebras, which requires a formal expertise and may become complex especially with large systems. In this paper, we report our experience in the formal verification of safety-critical real-time systems. We propose a formal mapping for a real-time task model using the LNT language, and we describe how it is used for the integration of a formal verification phase in an AADL model-based development process. We focus on real-time systems with event-driven tasks, asynchronous communication and preemptive fixed-priority scheduling. We provide a complete tool-chain for the automatic model transformation and formal verification of AADL models. Experimentation illustrates our results with the Flight control system and Line follower robot case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call