Abstract

The weakly relational domain of Octagons offers a decent compromise between precision and efficiency for numerical properties. Here, we are concerned with the construction of non-numerical relational domains. We provide a general construction of weakly relational domains, which we exemplify with an extension of constant propagation by disjunctions. Since for the resulting domain of 2-disjunctive formulas satisfiability is NP-complete, we provide a general construction for a further, more abstract, weakly relational domain where the abstract operations of restriction and least upper bound can be efficiently implemented. In the second step, we consider a relational domain that tracks conjunctions of inequalities between variables, and between variables and constants for arbitrary partial orders of values. Examples are sub(multi)sets, as well as prefix, substring or scattered substring orderings on strings. When the partial order is a lattice, we provide precise polynomial algorithms for satisfiability, restriction, and the best abstraction of disjunction. Complementary to the constructions for lattices, we find that, in general, satisfiability of conjunctions is NP-complete. We therefore again provide polynomial abstract versions of restriction, conjunction, and join. By using our generic constructions, these domains are extended to weakly relational domains that additionally track disjunctions. For all our domains, we indicate how abstract transformers for assignments and guards can be constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.