Abstract

On the basis of early theoretical and empirical studies, genetic algorithms have typically used 1 and 2-point crossover operators as the standard mechanisms for implementing recombination. However, there have been a number of recent studies, primarily empirical in nature, which have shown the benefits of crossover operators involving a higher number of crossover points. From a traditional theoretical point of view, the most surprising of these new results relate to uniform crossover, which involves on the averageL/2 crossover points for strings of lengthL. In this paper we extend the existing theoretical results in an attempt to provide a broader explanatory and predictive theory of the role of multi-point crossover in genetic algorithms. In particular, we extend the traditional disruption analysis to include two general forms of multi-point crossover:n-point crossover and uniform crossover. We also analyze two other aspects of multi-point crossover operators, namely, their recombination potential and exploratory power. The results of this analysis provide a much clearer view of the role of multi-point crossover in genetic algorithms. The implications of these results on implementation issues and performance are discussed, and several directions for further research are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.