Abstract

The performance of a genetic algorithm (GA) is dependent on many factors: the type of crossover operator, the rate of crossover, the rate of mutation, population size, and the encoding used are just a few examples. Currently, GA practitioners pick and choose GA parameters empirically until they achieve adequate performance for a given problem. In this paper we have isolated one such parameter: the crossover operator. The motivation for this study is to provide an adaptive crossover operator that gives best overall performance on a large set of problems. A new adaptive crossover operator “selective crossover” is proposed and is compared with two-point and uniform crossover on a problem generator where epistasis can be varied and on trap functions where deception can be varied. We provide empirical results which show that selective crossover is more efficient than two-point and uniform crossover across a representative set of search problems containing epistasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.