Abstract
Two models involving a foreground and a background queue are studied in the steady state. Service is provided either by a single server whose speed depends on the total number of jobs present, or by several parallel servers whose number may be controlled dynamically. Job service times have a two-phase Coxian distribution. Incoming jobs join the foreground queue where they execute phase 1, and then possibly move to the background queue for the second phase at lower priority. The trade-offs between holding and energy consumption costs are examined by means of a suitable cost function. Two different two-dimensional Markov processes are solved exactly. The solutions are used in several numerical experiments, aimed at illustrating different aspects of system behaviour.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.