Abstract
Silicon carbide-based ceramic matrix composites have received extensive attention in recent years. Many excellent reviews have reported on the tribological behavior of carbon fiber-reinforced carbon and silicon carbide dual matrix (C/C-SiC) composites. However, a systematic overview of the tribological properties of carbon fiber-reinforced silicon carbide (C/SiC) composites does not exist. This review focuses on C/SiC composites and summarizes the key factors, including internal factors (constituent content, graphitization process, material structure and fiber direction), and various test conditions (pressure and speed, dry and wet, temperature, and counterparts) that affect their tribological behavior. Their wear mechanisms under different conditions are elaborated. Finally, some potential future development directions for improving the performance of C/SiC composites are proposed to provide high-quality ceramic matrix composites for engineering applications. These directions include structural modification, matrix modification, coating technology, laser surface texturing, and material genome method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.