Abstract

Ceramic matrix composites have been recommended for space applications. Accordingly, in this paper, a material selection method for the forebody of a space transportation system is demonstrated. The methodology is based on mass-model coupled aerothermodynamic design of a highly-integrated forebody-inlet system that uses the multidisciplinary optimization capability of the TIPSO (Two-steps Improved PSO) algorithm. The design optimization and hence material parameters are evolved using the newly developed SHWAMIDOF-FI tool. This paper focuses on validating the selection of carbon composite material by optimizing the configuration parameters for integrating a cone-derived forebody into planar wedge surfaces and an inlet-isolator assembly, so as to form a mixed internal-external compression system. Surface temperature, thermal conductivity, tensile strength and emissivity are used as primary parameters for selection of a forebody material. The optimization results validate that a carbon fibre reinforced carbon and silicon carbide (C/C-SiC) dual matrix composite is best suited for the application

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.