Abstract

In the past, cyclic peptide drugs were commonly discovered by isolation of natural products. However, recent efforts predominantly use high-throughput synthetic or genetically encoded libraries to find potent and selective hits against a range of challenging therapeutic targets. Kawamura et al. (Chem. Sci., 2022, 13, 3256-3262, https://doi.org/10.1039/D1SC06844J) developed a new workflow that can be applied to mRNA display, using high-throughput clustering, SAR investigations and in silico structural studies. This led to the discovery of nanomolar, serum-stable cyclic peptides against the human glucose-dependent insulinotropic peptide receptor (hGIP-R).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call