Abstract
A soldering process performed in ambient air without the use of any flux is reported. We believe that this is the first time fluxless soldering process is successfully done in air without prior fluorine treatment. The fluxless process is implemented using Au-Sn binary system. It is based on Au-Sn multilayer design that is substantially tin-rich, namely, with 95 at.% Sn (91.8 wt.% Sn) and 5 at.% Au (8.2 wt.% Au). Over the past 15 years, we have developed numerous fluxless bonding processes. These processes require environments such as H/sub 2/ or N/sub 2/ during the bonding process to inhibit solder oxidation. This requirement is not compatible with the pick-and-place bonding machines widely employed in the industry. Thus, fluxless processing in air has been our lifelong endeavor. After many attempts, we finally achieved some initial success. The bonding process is carried out at 225/spl deg/C. The resulting joints are nearly void-free as confirmed by scanning acoustic microscopy (SAM). To study the microstructure and composition of the samples, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy was performed on the joint cross-section. The results show that the joint is composed of AuSn/sub 4/ intermetallic grains embedded in a Sn matrix. Re-melting temperatures of the solder joints were measured to range from 214/spl deg/C to 220/spl deg/C, which are consistent with data on the Au-Sn phase diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.