Abstract

Herein, we report the introduction of steric hindrance in molecular building blocks to prevent π···π stacking, thus allowing two-dimensional (2D) covalent organic sheets to form three-dimensional (3D) covalent organic frameworks (COFs) through entanglement. Starting from the rationally designed precursors containing a bulky anthracene unit in the vertical direction, a highly crystalline COF (3D-An-COF) was successfully synthesized. Very interestingly, 3D-An-COF was determined as an entangled 2D square net (sql) structure, and the high-resolution data (1.1 Å) obtained by the continuous rotation electron diffraction technique allowed us to directly locate all non-hydrogen atoms. Structurally, the presence of an anthracene group outside the C2h symmetry plane strongly reduces the π···π interactions and promotes the formation of square entanglements. In addition, 3D-An-COF is fluorescent and can be used as a sensor to detect the trace amount of antibiotics in water. This study provides a new strategy for the structural diversification of 3D COFs and will certainly motivate us to construct more entangled COFs for interesting applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call