Abstract

ObjectivesFace masks are an important component of personal protection equipment employed in preventing the spread of diseases such as COVID-19. As the supply of mass-produced masks has decreased, the use of homemade masks has become more prevalent. It is important to quantify the effectiveness of different types of materials to provide useful information, which should be considered for homemade masks. MethodsFiltration effects of different types of common materials were studied by measuring the aerosol droplet concentrations in the upstream and downstream regions. Flow-field characteristics of surrounding regions of tested materials were investigated using a laser-diagnostics technique, i.e., particle image velocimetry. The pressure difference across the tested materials was measured. ResultsMeasured aerosol concentrations indicated a breakup of large-size particles into smaller particles. Tested materials had higher filtration efficiency for large particles. Single-layer materials were less efficient, but they had a low pressure-drop. Multilayer materials could produce greater filtering efficiency with an increased pressure drop, which is an indicator of comfort level and breathability. The obtained flow-fields indicated a flow disruption downstream of the tested materials as the velocity magnitude noticeably decreased. ConclusionsThe obtained results provide an insight into flow-field characteristics and filtration efficiency of different types of household materials commonly used for homemade masks. This study allows comparison with mass-produced masks under consistent test conditions while employing several well-established techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.