Abstract

Abstract In this study, a flexure-based (compliant) linear guide with a motion range comparable to its footprint is presented. The design consists of two-folded leaf springs on which torsion reinforcement structures are added. Due to these structures, only two-folded leaf springs are needed instead of a minimum of five as in preexisting designs. The new design is compared to such a preexisting design, after optimizing both on a support stiffness metric. The new design scores over twice as high on the support stiffness metric, while occupying a smaller (−33%) and a less obstructive build volume. Stress, build volume, and manufacturing limitations are taken into account. In addition, a variation on the new design using three torsion reinforced folded leaf springs is presented and optimized. This design occupies a build volume similar to the preexisting design, but scores four times higher on the support stiffness metric. A prototype of the new design is built and its parasitic eigenfrequencies are measured, validating the theoretical models (normalized mean absolute error of 4.3%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.