Abstract

All dielectric materials including ceramics, semiconductors, biomaterials, and polymers have the property of flexoelectricity, which opens a fertile avenue to sensing, actuation, and energy harvesting by a broad range of materials. However, the flexoelectricity of solids is weak at the macroscale. Here, we achieve an ultrahigh flexoelectric effect via a composite foam based on PDMS and CCTO nanoparticles. The mass- and deformability-specific flexoelectricity of the foam exceeds 10,000 times that of the solid matrix under compression, yielding a density-specific equivalent piezoelectric coefficient 120 times that of PZT. The flexoelectricity output remains stable in 1,000,000 deformation cycles, and a portable sample can power LEDs and charge mobile phones and Bluetooth headsets. Our work provides a route to exploiting flexible and light-weight materials with highly sensitive omnidirectional electromechanical coupling that have applications in sensing, actuation, and scalable energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.