Abstract

In this paper, we propose a piezoelectric energy harvester with a fabric textile structure for wearable applications and examine its design and characteristics as a scalable energy harvester. The device is composed of warp and weft threads made of yarn strings and piezoelectric film straps, respectively, that are woven to each other to form a stretchable textile structure. The area of the prototype device, consisting of five weft and eleven warp threads, is 15 × 33 mm2. During the stretching operation, the curvature change and resultant time-varying strain in the piezoelectric weft threads induce output power. We demonstrate that a large-area device for wearable application can be easily obtained using the proposed structure, and the output power can be increased by reducing the thread dimension and consequently increasing the density of the threads. Maximum power densities of 81 and 125 μW cm−2 were obtained from the device using warp-thread diameters of 5 and 3 mm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.