Abstract
One of the techniques in region based image retrieval (RBIR) is comparing the global feature of an entire image and the local feature of image’s sub-block in query and database image. The determined sub-block must be able to detect an object with varying sizes and locations. So the sub-block with flexible size and location is needed. We propose a new method for local feature extraction by determining the flexible size and location of sub-block based on the transition region in region based image retrieval. Global features of both query and database image are extracted using invariant moment. Local features in database and query image are extracted using hue, saturation, and value (HSV) histogram and local binary patterns (LBP). There are several steps to extract the local feature of sub-block in the query image. First, preprocessing is conducted to get the transition region, then the flexible sub-block is determined based on the transition region. Afterward, the local feature of sub-block is extracted. The result of this application is the retrieved images ordered by the most similar to the query image. The local feature extraction with the proposed method is effective for image retrieval with precision and recall value are 57%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have