Abstract
In order to make the general user take vision tasks more flexibly and easily, this paper proposes a new solution for the problem of camera calibration from correspondences between model lines and their noisy image lines in multiple images. In the proposed method the common planar items in hand with the standard size and structure are utilized as the calibration objects. The proposed method consists of a closed-form solution based on homography optimization, followed by a nonlinear refinement based on the maximum likelihood approach. To automatically recover the camera parameters linearly, we present a robust homography optimization method based on the edge model by redesigning the classic 3D tracking approach. In the nonlinear refinement procedure, the uncertainty of the image line segment is encoded in the error model, taking the finite nature of the observations into account. By developing the new error model between the model line and image line segment, the problem of the camera calibration is expressed in the probabilistic formulation. Simulation data is used to compare this method with the widely used planar pattern based method. Actual image sequences are also utilized to demonstrate the effectiveness and flexibility of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.