Abstract

Halide perovskites (HPs) based memristors show great potential in the simulation of biological neurons. Herein, a memristor with Ag/PMMA&CsPbCl3/ITO structure is developed by incorporating CsPbCl3 nanocrystals (NCs) into poly(methyl methacrylate) (PMMA) as the functional layer. The device exhibits typical bipolar resistive behavior, low operating voltage, good endurance of more than 400 cycles, consistent and excellent ON/OFF ratio (≈ 103), and high mechanical bending stability (bending times = 1000). The RS mechanism has been well explained by the electric field induced formation and rupture of Ag filaments in the PMMA&CsPbCl3 layer. More importantly, the memristor successfully displays fundamental nociceptive functions including threshold, nonadaptation, relaxation, and sensitization (allodynia and hyperalgesia). To demonstrate the feasibility of the artificial nociceptor, a pressure nociceptor system is constructed using the Ag/PMMA&CsPbCl3/ITO device. These results provide new perspectives for the development of next-generation, high-performance HPs based neural morphology devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.