Abstract
The inclusion of the geographic information into regression models is becoming increasingly popular due to the increased availability of corresponding geo-referenced data. In this paper, a novel framework for combining spatio-temporal regression techniques and artificial neural network (ANN) regression models is presented. The key idea is to use the universal approximation property of the ANN function to account for an arbitrary spatial pattern in the dependent variable by including geographic coordinate variables as regressors. Moreover, the implicit location-specific effects are allowed to exhibit arbitrary interaction effects with other regressors such as a time variable. In contrast to other machine learning approaches for spatio-temporal data, the likelihood framework of the classic (linear) spatio-temporal regression model is preserved. This allows, inter alia, for inference regarding marginal effects and associated confidence. The framework also allows for non-normal conditional distributions, conditional spatial correlation, arbitrary trend and seasonality. These features are demonstrated in a simulation section and two data examples, using linear spatio-temporal models as a reference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have