Abstract

In complex networks, the role of a node is based on the aggregation of structural features and functions. However, in real networks, it has been observed that a single node can have multiple roles. Here, the roles of a node can be defined in a case-by-case manner, depending on the graph data mining task. Consequently, a significant obstacle to achieving multiple-role discovery in real networks is finding the best way to select datasets for pre-labeling. To meet this challenge, this study proposes a flexible framework that extends a single-role discovery method by using domain adversarial learning to discover multiple roles for nodes. Furthermore, we propose a method to assign sub-networks, derived through community extraction methods, to a source network and a validation network as training datasets. Experiments to evaluate accuracy conducted on real networks demonstrate that the proposed method can achieve higher accuracy and more stable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.