Abstract
Purpose: aiming at the limitations of pre-input parameters in the complex network overlapping community discovery algorithm based on tag propagation in real networks and the problems of tag redundancy, method: a node degree increment-based proximal policy optimization method for community discovery in online social networks is proposed (named NDI-PPO). Process: by applying the cohesion idea and introducing the concept of modularity increment, a social network great community is constructed from the bottom up according to the criteria of community division. For the problem that the number of iterative steps is sensitive to the strategy gradient algorithm, we adopt an improved PPO to improve the efficiency of feature extraction. In label updating, the maximum clique is used as the core unit to update the labels and weights of the maximum maximum clique adjacent nodes from the center to the periphery using intimacy, and the weights of the non-maximum maximum clique adjacent nodes are updated by means of the maximum weight. In the post-processing stage, the adaptive threshold method is used to remove the noise in the node label, which effectively overcomes the limitation of the number of pre-input overlapping communities in the real network. Result: The simulation results show that the proposed community discovery algorithm NDI-PPO is superior to other advanced algorithms, the time complexity is greatly reduced, and it is suitable for community discovery in large social networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.