Abstract

The use of pressure sensors made of conductive polymers is common in biomechanical applications. Unfortunately, hysteresis, nonlinearity, non-repeatability and creep have a significant effect on the pressure readings when such conductive polymers are used. The objective of this paper is to explore the potential of a new flexible encapsulated micro electromechanical system (MEMS) pressure sensor system as an alternative for human interface pressure measurement. A prototype has been designed, fabricated, and characterized. Testing has shown that the proposed packaging approach shows very little degradation in the performance characteristics of the original MEMS pressure sensor. The much-needed characteristics of repeatability, linearity, low hysteresis, temperature independency are preserved. Thus the flexible encapsulated MEMS pressure sensor system is very promising and shows superiority over the commercially available conductive polymer film sensors for pressure measurement in biomechanical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.