Abstract

The proportional hazards model (PH) is currently the most popular regression model for analyzing time-to-event data. Despite its popularity, the analysis of interval-censored data under the PH model can be challenging using many available techniques. This article presents a new method for analyzing interval-censored data under the PH model. The proposed approach uses a monotone spline representation to approximate the unknown nondecreasing cumulative baseline hazard function. Formulating the PH model in this fashion results in a finite number of parameters to estimate while maintaining substantial modeling flexibility. A novel expectation-maximization (EM) algorithm is developed for finding the maximum likelihood estimates of the parameters. The derivation of the EM algorithm relies on a two-stage data augmentation involving latent Poisson random variables. The resulting algorithm is easy to implement, robust to initialization, enjoys quick convergence, and provides closed-form variance estimates. The performance of the proposed regression methodology is evaluated through a simulation study, and is further illustrated using data from a large population-based randomized trial designed and sponsored by the United States National Cancer Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.