Abstract
One of the most popular approaches for scheduling manufacturing systems is dispatching rules. Different types of dispatching rules exist, but none of them is known to be globally the best. A flexible artificial neural network–fuzzy simulation (FANN–FS) algorithm is presented in this study for solving the multiattribute combinatorial dispatching (MACD) decision problem. Artificial neural networks (ANNs) are one of the commonly used metaheuristics and are a proven tool for solving complex optimization problems. Hence, multilayered neural network metamodels and a fuzzy simulation using the α-cuts method were trained to provide a complex MACD problem. Fuzzy simulation is used to solve complex optimization problems to deal with imprecision and uncertainty. The proposed flexible algorithm is capable of modeling nonlinear, stochastic, and uncertain problems. It uses ANN simulation for crisp input data and fuzzy simulation for imprecise and uncertain input data. The solution quality is illustrated by two case studies from a multilayer ceramic capacitor manufacturing plant. The manufacturing lead times produced by the FANN–FS model turned out to be superior to conventional simulation models. This is the first study that introduces an intelligent and flexible approach for handling imprecision and nonlinearity of scheduling problems in flow shops with multiple processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.