Abstract

Na3V2(PO4)3 (NVP) is one of the most promising candidates for use as cathodes in room-temperature sodium ion batteries owing to its high structural stability and rapid Na+ transportation kinetics. The cationic doping of foreign ions at Na or V sites in the NVP lattice has proven to be an effective approach for enhancing the electrochemical performance of NVP. In this work, we present a first-principles density functional theory investigation of the impact of polyanionic boron doping at P sites on the structural and electrochemical behavior of NVP. Our simulation results suggest that B doping considerably increases the structural stability of NVP while shrinking its lattice size to some extent. Since B donates far fewer electrons to connected O atoms, the surrounding V atoms become more positive, causing the operating voltage to increase with B content. However, the reduction in lattice size is not beneficial for the Na+ transportation kinetics. As demonstrated by a search for the transition state, a concerted ion-exchange mechanism is preferred for Na+ transportation, and increased B doping leads to a higher Na+ diffusion barrier. Improvements in electrochemical performance due to B doping see (Hu et al. Adv Sci 3(12):1600112, 2016) appear to originate mainly from the resulting increased electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.