Abstract

We present the first determination of the value of the strong coupling via a simultaneous global fit of the proton parton distribution functions (PDFs) at approximate N3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{N}^3$$\\end{document}LO (aN3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{N}^3$$\\end{document}LO) order in QCD. This makes use of the MSHT global PDF fitting framework, and in particular the recent theoretical advances t l;;mhat allow a PDF fit to now be performed at this order. The value of the strong coupling is found to be αS(MZ2)(aN3LO)=0.1170±0.0016\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha _{S}(M_Z^2)(\\mathrm{aN^3LO}) = 0.1170 \\pm 0.0016$$\\end{document}. This is in excellent agreement with the NNLO value of αS(MZ2)(NNLO)=0.1171±0.0014\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\alpha _{S}(M_Z^2)(\ extrm{NNLO}) = 0.1171 \\pm 0.0014$$\\end{document}, indicating that good perturbative convergence has been found. The resulting uncertainties, calculated using the MSHT dynamic tolerance procedure, are somewhat larger, but more accurate, at aN3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{N}^3$$\\end{document}LO, due to the missing higher order theoretical uncertainties that are included at this order, but not at NNLO. We in addition present a detailed breakdown of the individual dataset sensitivity to the value of the strong coupling, with special focus on the impact of fitting dijet rather than inclusive jet data. This choice is found to have a non-negligible impact, but with overall good consistency found, especially at aN3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{N}^3$$\\end{document}LO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.