Abstract

This paper addresses the problem of attitude control of a spacecraft in the presence of model uncertainty, external disturbance, actuator fault and saturation. By introducing a novel form of integral backstepping control, a finite-time fault tolerant control is designed to obtain satisfactory performance, rapid convergence of the system states, reduced steady-state error and high robustness. Guaranteeing finite-time convergence of the attitude trajectory is a significant feature of the proposed control law that is critical in fault tolerant systems. Since the upper bound of the system uncertainty and disturbance is quite difficult to obtain, an adaptation mechanism is presented under which there is no need to know this upper bound. Not only finite-time convergence of the attitude trajectory is proved using the Lyapunov analysis, but also the actuator saturation and fault are taken into account while designing the controller. Simulation results verify the effectiveness and performance of the presented approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.