Abstract
We propose a new finite volume method for scalar conservation laws with stochastic time–space dependent flux functions. The stochastic effects appear in the flux function and can be interpreted as a random manner to localize the discontinuity in the time–space dependent flux function. The location of the interface between the fluxes can be obtained by solving a system of stochastic differential equations for the velocity fluctuation and displacement variable. In this paper we develop a modified Rusanov method for the reconstruction of numerical fluxes in the finite volume discretization. To solve the system of stochastic differential equations for the interface we apply a second-order Runge–Kutta scheme. Numerical results are presented for stochastic problems in traffic flow and two-phase flow applications. It is found that the proposed finite volume method offers a robust and accurate approach for solving scalar conservation laws with stochastic time–space dependent flux functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.