Abstract

Steady, two-dimensional flows of viscoelastic liquid with memory are analyzed by means of a nonlinear integral constitutive equation, novel streamlined finite elements, Galerkin's method of weighted residuals, and Newton iteration. By their relation to streamlines the new elements allow, for the first time, full Newton iteration of the algebraic equation set to which the governing integrodifferential system reduces. Streamlines are computed simultaneously with velocity components and pressure, the primary unknowns; to track the history of liquid particles the deformation equations are solved analytically in a Protean system of coordinates that conforms to the streamlines. In the cases studied the Newton iteration converges quadratically to a creeping flow state of Weissenberg number (product of upstream wall shear rate and relaxation time of the liquid) up to about 20 in channel flow, 10 in film flow, and 2 in die-swell flow. Shear-thinning shrinks the domain of convergence; it also reduces die-swell. A slip boundary condition in the vicinity of the contact line extends the domain of convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.