Abstract

We present a finite difference method for solving parabolic partial integro-differential equations with possibly singular kernels which arise in option pricing theory when the random evolution of the underlying asset is driven by a Levy process or, more generally, a time-inhomogeneous jump-diffusion process. We discuss localization to a finite domain and provide an estimate for the localization error under an integrability condition on the Levy measure. We propose an explicit-implicit time-stepping scheme to solve the equation and study stability and convergence of the schemes proposed, using the notion of viscosity solution. Numerical tests are performed for the Merton jump-diffusion model and for the Variance Gamma model with smooth and non-smooth payoff functions. Our scheme can be used for European and barrier options, applies in the case of pure-jump models or degenerate diffusion coefficients, and extends to time-dependent coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.