Abstract
We propose a stochastic model to develop a partial integro-differential equation (PIDE) for pricing and pricing expression for fixed type single Barrier options based on the Ito-Levy calculus with the help of Mellin transform. The stock price is driven by a class of infinite activity Levy processes leading to the market inherently incomplete, and dynamic hedging is no longer risk free. We first develop a PIDE for fixed type Barrier options, and apply the Mellin transform to derive a pricing expression. Our main contribution is to develop a PIDE with its closed form pricing expression for the contract. The procedure is easy to implement for all class of Levy processes numerically. Finally, the algorithm for computing numerically is presented with results for a set of Levy processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.